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Abstract

Recent Offline Reinforcement Learning methods have succeeded in learning high-
performance policies from fixed datasets of experience. A particularly effective
approach learns to first identify and then mimic optimal decision-making strategies.
Our work evaluates this method’s ability to scale to vast datasets consisting almost
entirely of sub-optimal noise. A thorough investigation on a custom benchmark
helps identify several key challenges involved in learning from high-noise datasets.
We re-purpose prioritized experience sampling to locate expert-level demonstra-
tions among millions of low-performance samples. This modification enables
offline agents to learn state-of-the-art policies in benchmark tasks using datasets
where expert actions are outnumbered nearly 65 : 1.

1 Introduction

Reinforcement Learning (RL) promises to automate decision-making and control tasks across a wide
range of applications. However, there are many real-world problems for which the typical learning
and exploration process is too expensive (e.g., robotics, finance) or too dangerous (e.g., healthcare,
self-driving) to make RL a viable solution. Fortunately, there is hope that we can trade RL’s reliance
on exploration and online feedback for a new reliance on large fixed datasets, much like those that
have driven progress in supervised learning over the last decade [40, 30, 29]. In many situations,
we can collect experience by recording the decisions of human demonstrators or existing control
systems. For example, we can collect data for self-driving systems by mounting cameras and other
sensors onto human-driven vehicles. However, as the scale of the dataset collection process grows,
it becomes increasingly impractical to verify the quality of the data we are collecting. Even worse:
the task may be challenging enough that no quality demonstrations could ever exist; instead, fleeting
moments of optimal decision-making occur by chance in a sea of noise collected by a large number
of agents.

Our goal is to build agents that can learn to pick out valuable information in large, unfiltered datasets
containing experience from a mixture of sub-optimal policies. Recent work has proposed new ways
to mimic the best demonstrations in a dataset [32, 45, 44, 36, 6]. In this paper, we analyze and address
some of the problems that arise in determining which demonstrations are worth learning. We build a
custom dataset of experience from popular continuous control tasks to demonstrate the challenge
of learning from datasets with few or zero successful trajectories and provide an easy-to-implement
solution that lets us learn expert policies from millions of low-performance samples.

2 Background and Related Work

In the interest of space, we assume the reader is familiar with Deep RL, continuous control tasks, and
the general off-policy actor-critic framework. For an introduction, please refer to [31] and [13].
Preprint. Under review.



2.1 Offline Reinforcement Learning

Offline (or “Batch") RL is a subfield that deals with the special case of learning from static demon-
stration datasets. In offline RL, our goal is to discover the best policy given a dataset of fixed
experience without the ability to explore the environment. The naive application of off-policy RL
methods to the fully offline setting often fails due to distribution shift between the dataset and test
environment [30]. Solutions based on approximate dynamic programming are also vulnerable to
exploding Q-values due to the propagation of overestimation error with no opportunity for correction
in the online environment [24].

Modern approaches to offline RL broadly involve modifications to standard off-policy algorithms
to reduce overestimation and minimize distributional shift. REM uses an ensemble of critics to
reduce overestimation error [2]. UWAC [46] uses the uncertainty of value predictions to reduce error
propagation. CQL [23] penalizes out-of-distribution Q-values to encourage in-distribution actions.
MOPO [49] is a model-based method that penalizes actions that leave the data distribution that the
model was trained on.

2.2 Advantage-Filtered Behavioral Cloning

While much progress has been made in adapting off-policy RL to the constraints of the offline setting,
these methods often struggle to outperform simple Behavioral Cloning (BC) [37, 12]. In BC, we train
an actor network to replicate the actions taken in the demonstration dataset:

Lactor = E
(s,a)∼D

[−logπθ(a|s))] (1)

Behavioral Cloning’s inability to outperform its demonstrations becomes a major shortcoming when
the dataset contains sub-optimal experience. Ideally, we would discard trajectories that contain
low-quality demonstrations and only clone the best behavior available. This is the core idea behind
Filtered Behavioral Cloning (FBC). FBC compares demonstrations to discard or down-weight the
advice of sub-optimal policies. A reasonable metric for comparison is the advantage function, defined
as Aπ(s, a) = Qπ(s, a) − V π(s), which represents the change in expected return when taking
action a instead of following the current policy. Filtering experience by advantage is essentially a
counterfactual query - we compute how much better action a would have been than the action chosen
by our policy. We will refer to BC methods that filter experience by advantage as Advantage-Filtered
Behavioral Cloning (AFBC). Because we do not have access to the true Qπ or V π functions, we need
to estimate the advantage. There are two main approaches:

1. Monte Carlo Advantages define an estimate of the advantage Âπ(s, a) = η̂(s, a)− Vφ(s),
where η̂(s, a) represents the empirical expected return of trajectories in the buffer that
contain this (s, a) pair and Vφ(s) represents a learned state value function parameterized by
a neural network with weights φ.

2. Q-Based Advantages define an estimate of the advantage Âπ(s, a) = Qφ(s, a) −
Ea′∼π(s)[Qφ(s, a′)] ≈ Qφ(s, a) − 1

k Σki=0Qφ(s, a′ ∼ πθ(s)). We typically learn Qφ
as in standard off-policy actor-critics. The BC loss prevents the actor policy from diverging
from the demonstration policy and reduces the risk of overestimation error.

Once we have a reliable estimate of the advantage function, we add a “filter" to the BC loss (Eq 1):

Lactor = E
(s,a)∼D

[
−f(Âπ(s, a))logπθ(a|s))

]
(2)

There are two common choices of f :

1. Binary Filters define f(Â(s, a)) = 1{Âπ(s,a)>0}. This creates a boolean mask that elimi-
nates samples which are thought to be worse than the current policy [45].

2. Exponential Filters define f(Â(s, a)) = exp(βÂπ(s, a)), where β is a hyperparameter.
The advantage values are often clipped or normalized for numerical stability [44, 32].

The methods implemented and expanded upon in this paper are most directly related to CRR [45]
and AWAC [32], as discussed in Section 4.1. AWAC and CRR are roughly concurrent publications
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Figure 1: A rough classification of the recent Advantage-Filtered Behavioral Cloning literature,
which contains a surprising amount of overlap due to concurrent publication and changes in motiva-
tion/experimental focus. ∗ SIL and SAIL use a clipped rather than an exponential advantage, but the
loss is still decreasing in the magnitude of the advantage.

that arrive at a very similar method. CRR is focused on offline RL in the RL Unplugged benchmark
[12], while AWAC is more concerned with accelerating online fine-tuning by pre-training on smaller
offline datasets. These methods are the latest iteration of the core AFBC idea that has appeared
many times in recent literature. This section is partly an attempt to unify the literature and highlight
a common theme that has been somewhat under-recognized. To the best of our knowledge, the
first deep-learning-era AFBC implementation is MARWIL [43], which performed BC on samples
re-weighted by their Monte Carlo advantage estimates and applied the technique to environments like
robot soccer and multiplayer online battle arenas. AWR [36] is a very similar method that focuses
on continuous control tasks. BAIL [6] learns an upper-envelope value function that encourages
optimistic value estimates, and therefore conservative advantage estimates. Samples are filtered based
on heuristics of their advantage relative to the rest of the dataset (e.g. with advantage larger than
x or larger than x% of all samples, where x becomes a hyperparameter). In [33], demonstration
datasets accelerate off-policy learning by providing an expert action when its value exceeds that of
the agent’s policy (according to the critic network) - essentially creating a deterministic binary filter.
SIL [34] combines an AFBC-style loss with the standard policy gradient in an online setting, where
the BC step greatly improves sample efficiency. SAIL [11] adds Q-based advantages to SIL and
corrects outdated MC estimates by replacing them with parameterized estimates when they become
too pessimistic. [14] gives another approach to self-imitating policy gradients for sample-efficient
(online) continuous control. SQIL [38] and ORIL [50] use standard off-policy optimization with
a modified reward function that encourages the agent to stay in (or return to) (s, a) pairs that are
covered by the dataset, thereby helping it recover from distributional shift. We provide a rough
classification of the most relevant modern literature according to the tree diagram in Figure 1.

Imitation Learning [35] also deals with learning from sub-optimal demonstrations. While the goals
and experiments are similar to the offline RL setting, the methods are typically quite different. See
VILD [42], IC-GAIL, and 2IWIL [47] for recent examples.

3 Datasets for High-Noise Offline RL

Our goal is to investigate the performance of AFBC as the quality of the dataset decreases, and useful
demonstrations are hidden in sub-optimal noise. The first step is to gather those fixed datasets and
create a systematic approach to varying the quantity and quality of demonstrations provided to our
agents. Learning from sub-optimal data is a widely recognized challenge for offline RL, and as such
it is a key component of recent benchmarks, including D4RL [12], RL Unplugged [15], and NeoRL
[37]. However, these benchmarks do not give us enough control over the demonstration dataset for
our purposes. Of these, NeoRL and D4RL are closest to what we are looking for - both offer low,
medium, and expert performance datasets of varying sizes but are not large enough for some of our
experiments and only offer those three tiers of quality. In contrast, RL Unplugged contains enormous
datasets dumped from agent replay buffers throughout training but gives us less control over the
quality of any given subset of that data. In an effort to get the best of both worlds, we collect our own
offline RL dataset in the following manner:
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Dataset Name Very Bad (0-199) Bad (200-399) Okay (400-699) Great (700-899) Expert (900+)
Total 
Samples:

Great-Expert 0 0 0 750,000 750,000 1,500,000
Ok-Expert 0 0 500,000 500,000 500,000 1,500,000
Bad-Expert 0 375,000 375,000 375,000 375,000 1,500,000
VeryBad-Expert 300,000 300,000 300,000 300,000 300,000 1,500,000

Signal 600k 600,000 450,000 200,000 150,000 100,000 1,500,000

Signal 1M 1,000,000 600,000 200,000 150,000 100,000 2,050,000

Signal 3M 3,000,000 1,000,000 200,000 150,000 100,000 4,450,000

Signal 4.5M 4,500,000 2,000,000 200,000 150,000 100,000 6,950,000
Stitching 4,500,000 2,000,000 0 0 0 6,500,000

Good-Expert VeryBad-Expert Signal 4.5M

Figure 2: Distribution of samples in all 9 dataset types. We begin with near-optimal BC data and
slowly shift the distribution towards low-performance noise.

1. We train online agents in 5 tasks from the DeepMind Control Suite. The D4RL and RL
Unplugged authors stress the importance of diverse policies and state-space coverage. With
that in mind, we train multiple policies per environment using a mixture of algorithms and
hyperparameters. More specifically, we use (deterministic) TD3 [13] and several variants of
(stochastic) SAC [17], implemented in [3].

2. We pause at regular intervals during training and record the policies’ behavior for 50 episodes
of environment interaction. To broaden our state-action space coverage, we sample from
stochastic policies (rather than taking the mean, as is standard for test-time policy evaluation).
The average undiscounted return of the policy is saved alongside the (s, a, r, s′, d) tuples.

3. The saved experience is split into 5 levels of performance. The DMC tasks have returns in
the range 0− 1000, and we divide the dataset according to the average return of the policy
at the time they were recorded. The final result is a large dataset with millions of samples
and five levels of performance. Full size and quality information is listed in Appendix A
Figure 8.

From this raw data, we create a series of 9 offline RL datasets for each task. The size and makeup of
each dataset is listed in Figure 2. Great-Expert splits 1, 500, 000 samples evenly across expert and
high-performance demonstrations. This represents a near best-case scenario for behavioral cloning
methods in which very little data needs to be actively ignored. Okay-Expert begins a trend where
the same 1, 500, 000 sample budget is allocated to lower quality data, making vanilla BC less and
less effective. This concludes with VeryBad-Expert, where samples are split evenly across all 5
performance bins. The next 4 datasets limit expert experience to just 100, 000 samples, which our
experiments show is typically enough to train successful policies without overfitting. The challenge
is finding those 100, 000 samples in a buffer of millions of poor demonstrations. The most difficult
of these is Signal 4.5M, where sub-optimal data crowds the dataset at a ratio of almost 65 : 1. Finally,
we test the agent’s ability to extract knowledge from pure noise. In the Stitching task, the agent is
given 6, 500, 000 samples of experience from agents that perform only slightly better than random
policies and must learn to identify the few moments of optimal decision making and combine them
into a single policy.

We benchmark the challenge of Behavioral Cloning in continuous control tasks by training BC agents
on our high-noise and multi-policy datasets. The results are shown in Appendix D Figure 12. BC
often fails to make progress, even with the Great-Expert datasets, presumably because of distribution
shift or mixed-policy learning. We see a sharp decline in BC performance as the dataset fills with
noisy demonstrations.
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4 Challenges in AFBC

4.1 AFBC Baseline and Implementation Details

We implement a custom AFBC baseline combining elements of AWAC and CRR. Monte Carlo
advantage estimates can work well in practice but limit our ability to learn from low-performance
data by creating pessimistic advantage estimates. Therefore, we adopt the Q-Based estimates from
CRR and AWAC, using critic networks trained similarly to SAC [17] and TD3 [13].

Lcritic = E
(s,a,r,s′)∼D

[
1

2

2∑
i=1

(Qφ,i(s, a)− (r + γ(min
j=1,2

Qφ′,j(s
′, ã′)))2

]
, ã′ ∼ πθ(s′) (3)

The advantage estimate is computed using 4 action samples:

Âπ(s, a) =
1

2

∑
j=1,2

Qφ,j(s, a)− 1

4

4∑
i=0

(
1

2

∑
j=1,2

Qφ,j(s, a
′ ∼ πθ(s))) (4)

Note that we do not use distributional critics as in CRR - nor do we use the the critic weighted policy
technique at test time. The policy is a tanh-squashed Gaussian distribution, implemented as in [48].
We use a single codebase for all experiments in order to control for small implementation details [19],
and have extensively benchmarked our code against existing results in the literature [12, 37]. See
Appendix B for more implementation details and a full list of hyperparameters.

4.2 Binary vs. Exponential Filters

While the exponential filter has been used with great success in prior work, it comes with two
non-trivial implementation challenges. First, we need to deal with the magnitude of advantages
across different environments. Advantage estimates are dependent on the scale of rewards, which can
vary widely even across similar tasks in the same benchmark (e.g., Gym MuJoCo [5]). There are
plenty of reasonable approaches to solving this. The simplest is to clip advantages in a numerically
stable range, but this runs the risk of losing the ability to differentiate between high-advantage actions.
MARWIL keeps a running average and normalizes the advantages inside the filter. The AWAC
codebase considers several alternatives, including softmax normalization. An interesting alternative
is PopArt [18, 20]; by standardizing the output of our critic networks we rescale advantages and get
the benefits of PopArt’s stability and hyperparameter insensitivity for free. The second challenge
is the temperature hyperparameter β. Prior work demonstrates significant changes in performance
across similar β values [43], and is often forced to use different settings in each domain [32].

We demonstrate the extent of the problem by implementing 9 reasonable variants and evaluating
them on tasks from the D4RL benchmark. We use D4RL instead of our custom datasets in order to
validate our implementation and compare against previously published results. The results are shown
in Figure 3. There is very little correlation between a setting’s relative return in one task and its
performance in the others, making it difficult to set a high-performance default a priori. A change in
β is enough to take us from near-failure to state-of-the-art performance. We argue that this could be
considered a major shortcoming when benchmarking research and dealing with real-world problems,
especially in a field that already suffers from significant implementation issues [10, 19]. For this
reason, all following experiments use a binary filter.

4.3 Advantage Distributions and Effective Batch Size

In an effort to get a better understanding of the dynamics of the AFBC algorithm, we track the
distribution of advantages in the dataset throughout training. Example results on the VeryBad-Expert
datasets are shown in Figure 4. Using data from our experiments, we identify three challenges with
current AFBC methods:

Effective Batch Size. Regardless of dataset quality, there are many samples with negative advantage.
In a typical task, the critic networks assign a negative advantage to more than half of the dataset - and
that number can rise as high as 90% in some cases. This means that we rely on a small fraction of
each batch to compute our gradients and improve the actor. The effect is most apparent when using
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halfcheetah-medium-expert-v0

Clip, β=3 10280
Clip, β=1/2 7942
Clip, β=1 6109
PopArt, β=3 5158
Norm, β=1 4252
Norm, β=10 4135
Norm, β=100 4091
PopArt, β=10 3852
PopArt, β=5 3575
D4RL 
Reference 7750

hopper-medium-expert-v0

PopArt, β=3 3622
Clip, β=1/2 3577
Clip, β=1 3575
PopArt, β=5 3496
Clip, β=3 3326
Norm, β=1 458
Norm, β=100 393
Norm, β=10 250
PopArt, β=10 26
D4RL 
Reference 3621

walker2d-medium-expert-v0

PopArt, β=10 4509
Clip, β=3 4446
Clip, β=1 4203
Clip, β=1/2 4138
PopArt, β=5 1817
Norm, β=1 1281
PopArt, β=3 1046
Norm, β=10 899
Norm, β=100 639
D4RL 
Reference 3747

Figure 3: The implementation challenges of exponential filters. We test 9 exponential-filter
variants on three tasks from the D4RL benchmark. The scores are listed in decreasing order; there is
little correlation between a filter’s rank in one task and its rank in the others. The ‘D4RL Reference‘
row lists the highest reported score of any algorithm from the D4RL results [12], to provide some
context.
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Figure 4: Distribution of advantage (adv.) estimates throughout training. We estimate the
advantage of a large sample of demonstrations from the replay buffer on the VeryBad-Expert datasets
for three control tasks where AFBC performs well. These figures were generated for every task and
dataset combination with similar results.

binary filters, where we may be entirely disregarding a large portion of each minibatch. Exponential
filters attribute at least some learning signal to each sample, but we are likely to be down-weighting
most of our batch. The AFBC baselines show that learning is still possible at low signal-to-noise
ratios, but we are sacrificing stability by reducing our network’s effective batch size. In noisy datasets
(Signal-4.5M), advantageous samples become so rare that a uniform sample of data yields batches
with prohibitively high variance.

Noisy Labels. Advantage estimates are highly concentrated at low absolute values. Many of the
demonstrations have advantage estimates that oscillate close enough to zero that they can be labeled
as positive or negative based on randomness in the estimator.

Static Advantage Distributions. The advantage distribution does not change very much over time.
The estimator spends the first few thousand learning steps adapting to the task’s reward scale but
makes few adjustments over the remaining steps. A priori, we might expect the agent to clone most or
all of the dataset before becoming more confident in its ability to identify the best strategies. Instead,
the estimator quickly learns to clone a small percentage of the dataset.

4.4 Addressing Effective Batch Size with Prioritized Sampling

As discussed above, learning from sub-optimal datasets with low-advantage actions reduces our actor
network’s batch size. We can improve by sampling batches that are more likely to be accepted by
the advantage filter. A straightforward way to implement this is to re-purpose Prioritized Experience
Relay (PER) [41] to sample high-advantage actions rather than high-error bellman backups. The
critic update proceeds as usual - sampling uniformly from the replay buffer and minimizing temporal
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difference error across the entire dataset. This gives us the opportunity to re-compute advantages and
identify new useful demonstrations. During the actor update, we sample transitions from the buffer
proportional to the advantage we computed when they were last used to train the critic. We can still
filter low-performance samples, but this is much less likely to be necessary (see Figure 5). PER also
seems to offer a partial solution to the noisy labels problem; for a sample to be presented to the filter
inside of the actor update, it must have been assigned a positive advantage at some point in the recent
past. Before we clone the action, it then has to be labeled positive again - reducing our ability to be
fooled by the large group of near-zero-advantage actions.

Prioritized Experience Replay Details: The Prioritized Experience Replay implementation is
based on OpenAI Baselines [9]. The replay is given the option of sampling uniformly from the
underlying buffer or using prioritized sampling. We sample uniformly during the critic update and
then update the samples’ priorities according to max(Âπ(s, a), ε), where ε is a small positive constant.
We also experiment with binary priority weights (1{Âπ(s,a)≥0} + ε). See Appendix D Figure 10
for a brief comparison. We do not use any importance sampling weights. This is a key difference
between our use-case and the traditional use of PER. Normally, we prioritize samples based on a
value that is highly correlated with their effect on the gradient (e.g., absolute TD error) and need
to use importance weights to compensate for sampling the highest priorities. This priority system
decreases our chances of sampling actions that our filter will discard but does not suffer from the same
skewed gradient values. As the actor takes gradient steps in the direction of the approved experience,
its action probabilities center around the provided action until the advantage drops to zero. In order to
keep track of this effect, we re-compute the priorities of the sampled actions after each actor update.
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Figure 5: Effective batch size of AFBC agents. We measure the percentage of actor update
batches that are approved by a binary filter throughout training. Curves represent the mean and
95% confidence interval across 5 random seeds in all 8 datasets that contain expert experience. PER
samples actions that are more likely to have positive advantage, meaning that fewer samples are
masked or down-weighted by our advantage filter.

This simple trick leads to a dramatic improvement in performance on the Signal datasets. Results
are listed in Figures 6 and 11. Simply put: if AFBC can learn a high-quality policy, AFBC with
the PER trick can maintain that performance despite an enormous amount of noise. This technique
also increases performance in the Stitching task, thanks to its enhanced ability to identify the rare
optimal decisions of random or near-random policies. It also risks overfitting and instability on
the high-quality datasets; this can be corrected by adjusting the α prioritization parameter of the
experience replay. Low α values reduce PER to uniform sampling. These experiments use α = .6.

4.5 Learning from Worst-Case Experience

One question that arises when working with large sub-optimal datasets is what may happen in the
worst-case scenario where much of the dataset is intentionally misleading. In this setting, we lose the
ability to stitch together random policies and must instead learn to isolate the expert data and ignore
everything else. To research this situation, we need a domain where humans can easily intuit about
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Great-Expert Ok-Expert Bad-Expert VeryBad-Expert Signal 600k Signal 1M Signal 3M Signal 4.5M Stitching

"Walker, 
Walk"

BC 795 ± 24 616 ± 45 422 ± 36 341 ± 37 112 ± 15 87 ± 17 62 ± 8 69 ± 10 44 ± 10
AFBC 834 ± 37 843 ± 39 828 ± 33 839 ± 74 461 ± 69 586 ±137 672 ± 121 502 ± 23 467 ± 21
AFBC+PER 859 ± 36 898 ± 36 812 ± 98 856 ± 54 625 ± 180 826 ± 90 917 ± 20 828 ± 51 538 ± 42

"Reacher, 
Hard"

BC 134 ± 44 86 ± 39 49 ± 19 33 ± 17 19 ± 11 20 ± 12 15 ± 10 17 ± 12 26 ± 11
AFBC 451 ± 347 593 ± 296 916 ± 28 947 ± 16 944 ± 15 954 ± 10 952 ± 9 947 ± 13 936 ± 18
AFBC+PER 137 ± 215 157 ± 164 905 ± 30 917 ± 38 946 ± 22 964 ± 11 956 ± 19 961 ± 12 945 ± 22

"Quadruped, 
Walk"

BC 689 ± 75 287 ±28 244 ± 18 212 ± 20 125 ± 18 101 ± 21 107 ± 15 99 ± 16 101 ± 17
AFBC 729 ± 66 679 ± 63 570 ±82 482 ± 39 471 ± 32 455 ± 28 482 ± 27 540 ± 52 393 ± 174
AFBC+PER 658 ± 144 676 ± 201 886 ± 33 825 ± 99 828 ± 62 878 ± 37 841 ± 38 728 ± 194 746 ± 70

Figure 6: AFBC in High-Noise Continuous Control Tasks. Prioritized sampling allows AFBC
to continue to learn high-performance policies when uniform sampling is overwhelmed by noise.
We use a consistent set of hyperparameters for each task, and report the mean and 95% confidence
interval across 5 random seeds. Results on more difficult tasks in Figure 11.

the optimal strategy and identify the worst possible policy. Therefore, we will take a brief detour
from the high-dimensional robotic control tasks of the DMC Suite and consider the classic “Mountain
Car" task in which an under-powered car learns to gain momentum by going backward to summit a
large hill. The environment is pictured in Figure 7a. The agent receives a large positive reward +100
for reaching the goal flag on top of the mountain, with a small penalty for fuel expenditure along
the way. The worst possible solution is to gain the speed necessary to climb up the mountain before
deciding to turn around and return to the starting position, thereby wasting as much fuel as possible.
The default state space is a (position, velocity) tuple, but we compress this information to a scalar
representing the current position and direction of movement to plot the Q and A functions as a 3D
surface. The action space is bounded in [−1, 1], where positive actions accelerate the cart to the right,
and negative actions accelerate it to the left.

The compressed state space makes the problem more difficult by hiding the velocity information
necessary to manage fuel expenditure, but it is still possible to reach the goal flag. We collect a dataset
of expert TD3 actions, alongside actions from a random policy. We also isolate random actions that
display worst-case behavior where the cart is making progress up the mountain but reverses to move
downhill. We create three offline datasets: expert demonstrations, a 9 : 1 ratio of random and expert
demonstrations, and a 9 : 1 ratio of worst-case (or ‘adversarial’) actions. Figure 7b shows the results
of BC, AFBC and AFBC+PER on these datasets. BC performs as expected: it learns from expert
data but is distracted by random actions and is confused by the adversarial demonstrations. Default
AFBC can ignore the random actions but still succumbs to the adversarial advice. We attribute this
to Q-value inflation - a hypothesis discussed in the appendix of the CRR [45] paper; in short: the
adversarial advice is so concentrated in a small region of (s, a) space that the bias of consistent
Q-updates causes the critic to overestimate the advantage of the adversarial actions. AFBC with the
PER trick is better equipped to handle this situation. By replaying experience proportional to its
advantage, PER ignores actions that have a small positive advantage due to bias and clones more of
the true expert data. AFBC+PER can solve the task based on the adversarial dataset, although the
sparse reward has inherently high variance. The critic networks correctly minimize the advantage of
the adversarial data (Figure 7c) and learn an accurate Q-function (Figure 7d).

5 Discussions & Conclusion

The ability to automatically learn high-performance decision-making systems from large datasets
will open up exciting opportunities to safely and effectively apply Reinforcement Learning to the
real world. There are many domains where we can find enough data to train large neural network
policies but cannot verify the demonstrated actions’ quality. Success hinges on our ability to answer
counterfactual questions about the data: are the decisions made in the dataset the correct ones, or
can we find a way to do better? Advantage-Filtered Behavioral Cloning offers an intuitive way
to formalize and answer this question. In this paper, we have conducted a thorough empirical
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step = 3,000 step = 50,000

x=0 x=1.8

s = x * sign(velocity)

a) b)

d)c)

Figure 7: Adversarial Demonstrations in Modified Mountain Car. a) We create a version of the
Mountain Car task that combines state and velocity information into a scalar state that is convenient
for plotting. b) AFBC can solve the task despite a 9 : 1 ratio of random actions and can even learn
despite a dataset of worst-case demonstrations. c) We show the evolution of the learned advantage
function across the full (s, a) space. d) The final Q-function.

study that attempts to unify existing techniques, identify critical obstacles, and provide assurance
that this method can learn from unfiltered datasets of any size. However, the prioritized sampling
method does not fully address the noisy label and static distribution problems discussed in Section
4.3. We experimented with several theoretical solutions that provided somewhat underwhelming
improvements on our baseline tasks. Please see Appendix C for a thorough discussion of future
directions.

Methods that can ignore or even improve using low-quality data are valuable because they simplify
offline RL dataset collection by reducing the risk that additional data will damage the system. Adding
more data is rarely unhelpful and is likely to increase performance. This creates an engineering
situation similar to Deep Supervised Learning, where more data and a bigger model are never the
wrong answer. Moving forward, we hope to combine this approach with the kinds of large network
architectures and high-dimensional datasets that have spurred progress in Deep Supervised Learning
to solve complicated tasks beyond simulated control benchmarks.

References
[1] Joshua Achiam. “Spinning Up in Deep Reinforcement Learning”. In: (2018).
[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An Optimistic Perspective on

Offline Reinforcement Learning. 2020. arXiv: 1907.04543 [cs.LG].

9

https://arxiv.org/abs/1907.04543


[3] Anonymous. RL Library Name Removed for Author Anonymity. https://github.com/.
2020.

[4] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance Reduction and
Stabilization for Deep Reinforcement Learning. 2017. arXiv: 1611.01929 [cs.AI].

[5] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].
[6] Xinyue Chen et al. BAIL: Best-Action Imitation Learning for Batch Deep Reinforcement

Learning. 2020. arXiv: 1910.12179 [cs.LG].
[7] Xinyue Chen et al. Randomized Ensembled Double Q-Learning: Learning Fast Without a

Model. 2021. arXiv: 2101.05982 [cs.LG].
[8] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. “Improving Stochastic Policy Gradi-

ents in Continuous Control with Deep Reinforcement Learning using the Beta Distribution”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup
and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017,
pp. 834–843. URL: http://proceedings.mlr.press/v70/chou17a.html.

[9] Prafulla Dhariwal et al. OpenAI Baselines. https : / / github . com / openai /
baselines. 2017.

[10] Logan Engstrom et al. Implementation Matters in Deep Policy Gradients: A Case Study on
PPO and TRPO. 2020. arXiv: 2005.12729 [cs.LG].

[11] Johan Ferret, Olivier Pietquin, and Matthieu Geist. “Self-Imitation Advantage Learning”. In:
arXiv preprint arXiv:2012.11989 (2020).

[12] Justin Fu et al. D4RL: Datasets for Deep Data-Driven Reinforcement Learning. 2021. arXiv:
2004.07219 [cs.LG].

[13] Scott Fujimoto, Herke Hoof, and David Meger. “Addressing function approximation error
in actor-critic methods”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 1587–1596.

[14] Tanmay Gangwani, Qiang Liu, and Jian Peng. Learning Self-Imitating Diverse Policies. 2019.
arXiv: 1805.10309 [stat.ML].

[15] Caglar Gulcehre et al. RL Unplugged: A Suite of Benchmarks for Offline Reinforcement
Learning. 2021. arXiv: 2006.13888 [cs.LG].

[16] Chuan Guo et al. On Calibration of Modern Neural Networks. 2017. arXiv: 1706.04599
[cs.LG].

[17] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. 2018. arXiv: 1801.01290 [cs.LG].

[18] Hado van Hasselt et al. Learning values across many orders of magnitude. 2016. arXiv:
1602.07714 [cs.LG].

[19] Peter Henderson et al. Deep Reinforcement Learning that Matters. 2019. arXiv: 1709.06560
[cs.LG].

[20] Matteo Hessel et al. Multi-task Deep Reinforcement Learning with PopArt. 2018. arXiv:
1809.04474 [cs.LG].

[21] Eric Jones, Travis Oliphant, et al. “SciPy: Open source scientific tools for Python”. In: ().
[22] Aviral Kumar, Abhishek Gupta, and Sergey Levine. DisCor: Corrective Feedback in Rein-

forcement Learning via Distribution Correction. 2020. arXiv: 2003.07305 [cs.LG].
[23] Aviral Kumar et al. Conservative Q-Learning for Offline Reinforcement Learning. 2020. arXiv:

2006.04779 [cs.LG].
[24] Aviral Kumar et al. “Stabilizing off-policy q-learning via bootstrapping error reduction”. In:

arXiv preprint arXiv:1906.00949 (2019).
[25] Arsenii Kuznetsov et al. Controlling Overestimation Bias with Truncated Mixture of Continu-

ous Distributional Quantile Critics. 2020. arXiv: 2005.04269 [cs.LG].
[26] Michail G Lagoudakis and Ronald Parr. “Reinforcement learning as classification: Leveraging

modern classifiers”. In: Proceedings of the 20th International Conference on Machine Learning
(ICML-03). 2003, pp. 424–431.

[27] Qingfeng Lan et al. Maxmin Q-learning: Controlling the Estimation Bias of Q-learning. 2020.
arXiv: 2002.06487 [cs.LG].

[28] Kimin Lee et al. SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning. 2020. arXiv: 2007.04938 [cs.LG].

10

https://github.com/
https://arxiv.org/abs/1611.01929
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1910.12179
https://arxiv.org/abs/2101.05982
http://proceedings.mlr.press/v70/chou17a.html
https://github.com/openai/baselines
https://github.com/openai/baselines
https://arxiv.org/abs/2005.12729
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/1805.10309
https://arxiv.org/abs/2006.13888
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1602.07714
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1809.04474
https://arxiv.org/abs/2003.07305
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2005.04269
https://arxiv.org/abs/2002.06487
https://arxiv.org/abs/2007.04938


[29] Sergey Levine. “Deep Reinforcement Learning in the Real World”. Workshop on New Direc-
tions in Reinforcement Learning and Control. 2019. URL: https://www.youtube.com/
watch?v=b97H5uz8xkI.

[30] Sergey Levine et al. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
Open Problems. 2020. arXiv: 2005.01643 [cs.LG].

[31] Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning. 2015. arXiv:
1509.02971 [cs.LG].

[32] Ashvin Nair et al. Accelerating Online Reinforcement Learning with Offline Datasets. 2020.
arXiv: 2006.09359 [cs.LG].

[33] Ashvin Nair et al. Overcoming Exploration in Reinforcement Learning with Demonstrations.
2018. arXiv: 1709.10089 [cs.LG].

[34] Junhyuk Oh et al. Self-Imitation Learning. 2018. arXiv: 1806.05635 [cs.LG].
[35] Takayuki Osa et al. “An Algorithmic Perspective on Imitation Learning”. In: Foundations and

Trends in Robotics 7.1-2 (2018), pp. 1–179. ISSN: 1935-8261. DOI: 10.1561/2300000053.
URL: http://dx.doi.org/10.1561/2300000053.

[36] Xue Bin Peng et al. Advantage-Weighted Regression: Simple and Scalable Off-Policy Rein-
forcement Learning. 2019. arXiv: 1910.00177 [cs.LG].

[37] Rongjun Qin et al. NeoRL: A Near Real-World Benchmark for Offline Reinforcement Learning.
2021. arXiv: 2102.00714 [cs.LG].

[38] Siddharth Reddy, Anca D. Dragan, and Sergey Levine. SQIL: Imitation Learning via Rein-
forcement Learning with Sparse Rewards. 2019. arXiv: 1905.11108 [cs.LG].

[39] Mamshad Nayeem Rizve et al. In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-
label Selection Framework for Semi-Supervised Learning. 2021. arXiv: 2101 . 06329
[cs.LG].

[40] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 2015. arXiv:
1409.0575 [cs.CV].

[41] Tom Schaul et al. Prioritized Experience Replay. 2016. arXiv: 1511.05952 [cs.LG].
[42] Voot Tangkaratt et al. “Variational Imitation Learning with Diverse-quality Demonstrations”.

In: Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal
Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,
13–18 Jul 2020, pp. 9407–9417. URL: http://proceedings.mlr.press/v119/
tangkaratt20a.html.

[43] Qing Wang et al. “Exponentially Weighted Imitation Learning for Batched Historical Data”. In:
Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/
file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf.

[44] Qing Wang et al. “Exponentially Weighted Imitation Learning for Batched Historical Data.”
In:

[45] Ziyu Wang et al. Critic Regularized Regression. 2020. arXiv: 2006.15134 [cs.LG].
[46] Yue Wu et al. “Uncertainty Weighted Offline Reinforcement Learning”. In: 2020. URL: https:

//offline-rl-neurips.github.io/pdf/27.pdf.
[47] Yueh-Hua Wu et al. “Imitation learning from imperfect demonstration”. In: International

Conference on Machine Learning. PMLR. 2019, pp. 6818–6827.
[48] Denis Yarats and Ilya Kostrikov. Soft Actor-Critic (SAC) implementation in PyTorch. https:

//github.com/denisyarats/pytorch_sac. 2020.
[49] Tianhe Yu et al. MOPO: Model-based Offline Policy Optimization. 2020. arXiv: 2005.13239

[cs.LG].
[50] Konrad Zolna et al. Offline Learning from Demonstrations and Unlabeled Experience. 2020.

arXiv: 2011.13885 [cs.LG].

A Dataset Details

We provide a listing of the quantity of available Q-learning samples for each environment in Figure 8.
Figure 2 shows the breakdown of how samples are distributed to generate datasets of varying quality.
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Transitions Per Performance Level

Task Name
"Very Bad" 
(0-199)

"Bad" 
(200-399)

"Okay" 
(400-699)

"Great" 
(700-899)

"Expert" 
(900+)

Walker, Walk 4,800,000 2,200,000 2,750,000 1,550,000 3,700,000

Cheetah, Run 5,400,000 2,850,000 3,650,000 7,900,000 2,450,000

Fish, Swim 6,900,000 2,750,000 6,500,000 3,900,000 0

Reacher, Hard 10,300,000 2,350,000 2,650,000 2,650,000 5,800,000
Quadruped, 
Walk 5,750,000 3,350,000 3,750,000 4,600,000 3,050,000

Figure 8: Available dataset sizes. Quantity of Q-learning samples available for each performance
range across the 5 control tasks studied.

B Implementation Details

B.1 Advantage Weighted Actor-Critic and Critic Regularized Regression Baselines

Hyperparameters and implementation details are listed in Table 1.

Policy Log Std Range [-10, 2]
Target Delay 2
Weight Decay None
Gradient Clipping None
Actor LR 1e-4
Critic LR 1e-4
Eval Interval 5000
Eval Episodes 10
Buffer Size Size of Dataset
Gamma 0.99
Tau 0.005
Batch Size 512
Gradient Steps 750k
Max Episode Steps 1000
Action Bound [-1, 1]
Network Architecture (256, ReLU, 256, ReLU)

Table 1: Default hyperparameters for the main DMC experiments.

We use a tanh-squashed Gaussian distribution for the actor, implemented as in [48]. We also
ran trials on every dataset with the implementation in [1], a custom implementation of the Beta
distribution described in [8], as well as some shorter runs with several other publicly available
implementations. The results were surprisingly mixed. The distribution parameterization can be
a critical implementation detail because unlike standard online approaches, the AFBC algorithm
often requires us to compute log probabilities of foreign actions far outside the center of our actor’s
own distribution. Numerically stable log prob computations are challenging, and implementations
designed for online algorithms may have had no reason to test for stability in this context. Even
successful implementations typically return large log prob values early in training. This is not an
issue as long as they quickly stabilize to a reasonable range, and we use some protective clipping (e.g.
at clearly unstable values like logπθ(a) ∈ (−1000, 1000)) to minimize the damage.

B.2 PopArt

PopArt is implemented as described in [18] and [20]. We use an adaptive step size when computing
the normalization statistics in order to reduce reliance on initialization. The ν value is initialized to a
large positive constant to improve stability (see [18] Pg 13).
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B.3 Evaluation

The scores displayed in the tables above are computed by:

1. Smoothing the learning curve with a polyak coefficient of .65.

2. Determining the mean and standard deviation of several (usually 5) smoothed learning
curves from different random seeds. This creates a lower-variance learning curve.

3. Reporting the average return and two standard deviations of our low-variance learning curve
over the last 10 evaluations of training.

C Alternative Binary Filters, Enhanced Critic Updates, and Future
Directions

While prioritized sampling is an effective solution to small effective batch sizes, we would still like to
learn more accurate advantage estimates and dynamic acceptance curves. In this section, we describe
several enhancements in hopes of furthering future research.

Annealed Binary Filters with Statistical T-Tests. Binary filters appear to rush towards an expe-
rience approval percentage that is overly pessimistic early in training. One way to address this is
to introduce an overly optimistic filter and adjust its approval criteria during the learning process.
A naive way to approach this is to approve samples above some low advantage threshold a0 and
increase that threshold over time, or to approve samples with an advantage higher than x0% of the
dataset and increase that threshold as learning progresses. However, it is challenging to set those
hyperparameters across different tasks. We design a binary filter that uses a pairwise statistical T-test
to create a much more task-invariant hyperparameter. We estimate the advantage of a sample k times
and then estimate the advantage of actions recommended by the current policy k times, and only
approve the dataset action for cloning if its advantage is greater than that of the current policy with
statistical confidence pt, where pt can be annealed from 1.0 to high confidence .05. Experiments
show that this does smooth the experience approval curve, but the final performance only matches
that of the standard binary filter in the control tasks we study. This approach is inspired by [26], and
implemented using the statistics functions in [21].

Annealed Binary Filters with Advantage Classifier Networks. A second candidate solution to
the same problem is to train an ensemble of networks that attempt to classify the advantage of actions
as positive or negative. We can then use our ensemble’s mean confidence and uncertainty to make
informed decisions about experience approval - inspired by techniques in self-supervised learning and
pseudo-labeling [39, 16]. This helps us deal with the noise surrounding the large fraction of samples
near zero advantage because pseudo-labels have to be positive for several gradient updates before the
ensemble will agree on their approval. We implement this using a similar network architecture to
existing critic networks but with a sigmoid output. Once again, performance is essentially identical to
the AFBC+PER baseline; the DMC tasks studied are simple enough that techniques either perform
very well or fail. We think it is likely that this technique could be successfully applied to a different
domain.

Accurate and Sample-Efficient Critics with REDQ and Weighted Bellman Updates. The im-
provement of AFBC over standard BC rests on our ability to accurately estimate the advantage
of (s, a) pairs, which makes the method vulnerable to bias in the critic learning process. Critic
overestimation and error propagation is a thoroughly investigated problem in recent work [13, 27, 25,
4, 22, 2]. REDQ [7] trains an ensemble of critic networks on target values generated by a random
subset of that ensemble and provides an effective bias-variance trade-off. It is also shown to allow for
many more gradient updates per sample, something that could be useful in the offline RL context
where the size of our dataset is fixed. Our main experiments are focused on high-noise datasets
containing millions of samples, which makes overfitting a secondary concern, but this could be a
key feature when working with small datasets. Another approach to managing overestimation error
is to minimize the impact of uncertain target values in the temporal difference update. We can use
REDQ’s critic ensemble to estimate target uncertainty and down-weight bellman backups when s′ is
out-of-distribution. We implement a modified version of the SUNRISE [28] critic loss, where we
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weight samples in the critic update according to a normalized uncertainty metric:

Lcritic = Lcritic ∗ softmax(τStd(Q{θi|i∈{0,1,...n})(s
′, a′ ∼ π(s′))) (5)

Where τ is a temperature hyperparameter. Figure 9 displays the mean Q value of the critic networks
in two sample-restricted “Walker, Walk" datasets. Interestingly, critic bias typically results in
uncontrollable under-estimation in the AFBC context because actors are restricted to in-distribution
actions, and the bias is caused by the min function in the target computation rather than over-
exploitation of positive bias by a policy gradient update. REDQ prevents Q-function collapse and
allows for more stable learning despite a very small offline dataset.
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Figure 9: Critic Ensembles in Low-Sample Datasets. We compare the Q-function learned by a
REDQ ensemble with weighted updates to that of standard clipped double-q learning in a version
of “Walker, Walk" VeryBad-Expert with just 25k and 50k transitions. The smaller dataset can cause
runaway under-estimation, but the more advanced critic techniques minimize this effect.

D Additional Results

This sections contains additional figures referenced in the main text that were deferred to the appendix
due to the page limit.

Reacher 
GE

Reacher 
OGE

Reacher 
BOGE

Reacher 
VBOGE

Reacher 
Signal 600k

Reacher 
Signal 1M

Reacher 
Signal 3M

Reacher 
Signal 4.5M

Walker 
GE

Walker 
OGE

Walker 
Signal-1M

Walker 
Signal 3M

Walker 
Signal 4.5M

Walker 
Stitching

Advantage 
Priorities

137 ± 
215

157± 
164 905 ± 30 917 ± 38 946 ± 22 964 ± 11 956 ± 19 961 ± 12

859 ± 
36

898 ± 
36 826 ± 90 917 ± 20 828 ± 51 538 ± 42

Binary 
Priorities

318 ± 
389

376 ± 
385 844 ± 90 950 ± 14 948 ± 20 958 ± 11 961 ± 8 950 ± 15 803 661 792 ± 78 659 ± 83 838 ± 38 528 ± 30

Figure 10: A comparison of binary and clipped advantage prioritization schemes. The returns
are very comparable. We suspect this is because the advantage values across the dataset are often
small and tightly distributed; as a result, the binary priorities are actually quite similar to the true
advantage weighting. Reported scores are the mean and 95% confidence interval across 5 random
seeds. “VBOGE" stands for “Very Bad, Bad, Okay, Good, Expert" - referring to the distribution of
dataset samples. In the main text this dataset is abbreviated “VeryBad-Expert". The same pattern
applies to “BOGE", “OGE", and “GE".
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Fish, Swim
Okay
Great

Bad
Great

VeryBad
Great

Signal
600k

Signal
1M

Signal
3M

BC 86 ± 4 81 ± 2 78 ± 2 78 ± 3 79 ± 3 79 ± 3

AFBC 210 ± 48 87 ± 13 77 ± 9 76 ± 7 76 ± 9 78 ± 7

AFBC+PER 319 ± 81 321 ± 124 183 ± 43 199 ± 72 171 ± 71 241 ± 19

Cheetah, Run
Great
Expert

Okay
Expert

Bad
Expert

VeryBad
Expert

Signal
600k

Signal
1M

Signal
3M

Signal
4.5M

BC 349 ± 89 252 ± 34 299 ± 21 241 ± 25 218 ± 24 200 ± 19 165 ± 25 185 ± 23
AFBC 100 ± 24 101 ± 26 169 ± 28 155 ± 28 209 ± 56 183 ± 23 249 ± 22 283 ± 34
AFBC+PER 84 ± 36 75 ± 26 192 ± 41 221 ± 60 178 ± 53 253 ± 28 320 ± 54 346 ± 53

Figure 11: AFBC in Challenging Environments where BC Fails. There are some environments
where the offline datasets appear insufficient for learning. These results use the default hparams in
Table 1. Reported scores are the mean and 95% confidence interval across 5 random seeds.

Figure 12: Behavioral Cloning in High-Noise Datasets. We train a BC agent on 9 datasets across
each task. The reported return is the average of 5 random seeds. The horizontal axis is sorted by
decreasing dataset quality. If BC can learn a successful policy from high-quality demonstrations, it
fails to maintain its performance as the dataset fills with sub-optimal noise.
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