
TUNESCOPE: SYNTHESIZING MUSIC AND COMPUTATIONAL

THINKING

Harsh Padhye
University of Virginia

Computer Science and Mathematics, B.A.
Distinguished Majors Thesis in Computer Science

April 20, 2023

Contents

1 Abstract 3

2 Background 3

3 Related Work 4

3.1 Music as an Educational Tool . 4

3.2 Inequities in Computer Science Education . 5

3.3 Other Code-Based Music Composition Platforms . 6

4 Design and Iterations 7

4.1 Inherited Work . 7

4.2 Assessing TuneScope’s Effectiveness as a Learning Tool . 8

5 Results 8

6 Future Work and Reflections 10

6.1 Expanding Upon TuneScope . 10

6.2 Future Studies on the Effectiveness of TuneScope . 10

6.3 TuneScope and Diversity in Computing . 11

7 Conclusion 12

8 Acknowledgements 12

2

1 Abstract

The Make-To-Learn Lab at the University of Virginia developed TuneScope, a tool to facilitate computational thinking
(CT) through music, to help democratize computer science education. Built upon the existing framework of Snap!
(University of California, Berkeley), TuneScope leverages sound analysis, design, and music composition to engage
novices with CT fundamentals. Existing research shows the benefits of using familiar contexts to teach CT, and
TuneScope builds upon this with musical contexts. We have designed a course centered around the use of TuneScope to
teach fundamentals of CT through music. In this paper, we investigate how students use TuneScope to develop sequential
melodies, build chords, and sample recorded sounds while simultaneously learning fundamental programming principles
such as algorithm design and abstraction. We assess and analyze how well introducing computing principles via music
composition improves the retention of CT skills.

2 Background

Before discussing the development and implementation of TuneScope, I will explain the requisite terminology used in
the project. TuneScope is a low-code library based on the block based programming language Snap! by University of
California, Berkeley. Students do not have to write with traditional programming syntax; instead they drag, drop, and
connect code blocks on their workspace in order to create scripts and code snippets. Their code directly manipulates a
sprite on its interactive stage, allowing the user to visualize and audialize their code snippets in real time. The library
accompanies a curriculum designed at the University of Virginia by the Make to Learn Lab. Students learn computer
science fundamentals by following art and music modules developed alongside TuneScope. Throughout the course,
students are evaluated on their code with four main areas of focus: abstraction, algorithms, data representation, and
documentation. Students are encouraged to publish their work on the official Snap! forum, where they can receive
feedback from the developers of the Snap! programming language.

Figure 1: Abstracted code which creates a Jackson Pollock style painting.

3

The figure above 1 illustrates the user interface of the Snap! workspace. The palette of blocks to the left are separated
by method type and function; for instance, blue Motion blocks categorize all blocks which move the user’s sprite on
the stage, while yellow Control blocks categorize control structures (if-statements, for-loops, etc.). Users can create
their own custom blocks to abstract their code, as seen with the Setup, Background, and Splatters blocks stacked
sequentially on the workspace. This code moves the sprite randomly across the stage and paints colorful paint splatters
to resemble artwork by Jackson Pollock. Running the code above produces the figure below.

Figure 2: A rendered image which resembles a Jackson Pollock painting.

3 Related Work

3.1 Music as an Educational Tool

My first experience with sound synthesis came in the form of Digital Audio Workstations (DAWs) and synthesizers.
DAWs offer a plethora of options to the producer beyond simply playing an instrument. Users can group tracks,
automate effects plugins, and even implement boolean logic in their rendering. Creating synthesizers in online
simulation software (VCV rack) offered a similar modular experience, but this time with more emphasis on
mathematics and signal processing. My prior background in computer science (having already coded for over four
years by this point) encouraged me to learn these tools analytically. For a while I was enamored with Euclidean
sequencers and conditional boolean gates, eventually submitting multiple assignments with signal flow chains
that better modeled backend code than sheet music. While my musical background certainly helped me grasp dif-
ficult concepts, it was my computational thinking framework that led to interesting compositions and synthesized sounds.

Could we flip that methodology and encourage computer science education through music? I had always been
interested in combining my two passions, but it wasn’t until joining the Make to Learn Lab that I realized its potential in
democratizing computing fields. In this section, I will discuss previous efforts to increase diversity in computer science
education and synthesize music with computational thinking. This will include the use of music as a pedagogical tool
in other subjects, the availability of music and computing resources in underprivileged schools, and existing platforms

4

for code-driven music composition.

Previous studies by music psychologists have shown a link between engagement in musical activities and improved
performance in intellect and spatial-temporal reasoning. Spatial-temporal reasoning, as stated by Holmes and Hallam,
is “the ability to transform mental images in the absence of a physical model. . . [allowing] individuals to create mental
imagery, develop patterns that can change in space and time, and visualize problems and potential solutions”[16]. In
their study, researchers assessed children’s spatial-temporal reasoning via a series of pattern and puzzle tests which
required the participants to complete a series of puzzles without being given instructions on how to do so. Essentially,
the children had to visualize the end product and problem-solve a way to reach the end goal. Results showed a
statistically significant increase (favoring the kids in music groups) in scores for the puzzle test at the end of each
academic year. A notable facet of this study was the design of the music curriculum used, which was intentionally
created to be simple and easy for primary school teachers who are not music specialists to teach and understand the
content. Spatial-temporal skills are an important part of computational thinking, as a foundational aspect of computer
science is identifying and casing a problem, designing a step-by-step solution, and recognizing patterns to streamline
code design [18]. Since the results of Holmes and Hallam’s study were most significant with their younger participants,
I was conscious of user-friendly and accessible design when devising a method of programmatic music composition.
The implementation of accessibility and user design will be discussed later in the paper.

3.2 Inequities in Computer Science Education

A significant concern in computational pedagogy is the lack of resources in offering a computer science education at
an early age, with many institutions lacking a program entirely. For instance, while Chicago public school districts
mandate computer science classes as a graduation requirement, some sectors of the city do not have the funds to hire
qualified teachers; this often results in computing-adjacent teachers (mathematics and other sciences) being forced into
the role with little to no programming experience [14].

The need for computing classes is clear. One case study indicates that schools that offer AP Computer Science classes
see twice as many female and underrepresented minority students taking AP Computer Science courses and exams
from previous years. However, the same cannot be said for less funded schools in the districts. These schools cite
barriers such as a lack of updated computer labs, lack of prepared faculty, inadequate student and teacher schedules,
and the fact that CS is treated as an elective rather than a part of the core curriculum [17, 9].

Gleasman et al. proposed and implemented a computer science enrichment program called Girls Creating
Opportunities to Develop and Empower Rural Success (G-CODERS) [8] as a means to reduce the gender
disparities in computer science in rural middle schools. They suggest that computational thinking education
begins as early as elementary school to combat many young women’s culturally imposed biases against computer
science. Their research suggests integrating computational thinking, coding structures, and design thinking into
one curriculum leads to better retention and engages more female STEM students to pursue computer science as a career.

Mickelson et al. explore reasons why certain ethnic and gender groups are underrepresented in the field, beyond the lack
of pedagogical resources. Analyzing demographics at the University of North Carolina at Charlotte, the researchers
show that Black, Latino, and Female students are heavily underrepresented in technology fields compared to national
and state census numbers. A stark example of this is the fact that “roughly 46% of undergraduates at UNC Charlotte
campuses are women, yet only 16.6% of UNC Charlotte computer science majors are women”[12]. Disparities in
gender and minority representation are more egregious in computer science than most other STEM fields. Part of what

5

encourages students to take and continue taking computer science classes is the identity of being a “computer science
major”. This is directly correlated, as previous literature indicates, with the belief that one can not only “do science”,
but “be a scientist”[12]. Computer science classes in high school and college too often lack the individually tailored
teaching required to encourage increased participation in under-represented groups. Courses that should be inclusive
and draw from students’ prior experiences are instead taught in “one size fits all” style lectures–only exacerbating the
demographic disparity in the field.

What inspired me most about this study was the prevailing idea of identity in computing education. Reflecting on my
own experiences as a computer science and mathematics student, I can confidently say I perceive myself as fitting into
the “model” of a computer scientist: a person who is methodical, logic-driven, and enjoys finding a singular correct
answer. My creative drive in music developed entirely in parallel to my academic desires and only converged after I
had determined I would become a computer scientist by profession. This narrow view of what constitutes a computer
scientist is partially what Mickelson et al. suggest is preventing female and under-represented minorities from joining
the field [12]. What if we broaden the identity of a computer scientist and demonstrate that computational thinking is as
much creative and free-form as it is analytical and programmatic? When considering the user experience during the
development of TuneScope, part of my mission was to give the user creative agency in music making. While the code
blocks themselves had to fit into a computational framework, the user should be able to manipulate them in artistic
ways. I wanted the user to assume the role of an artist and a scientist simultaneously, and show firsthand that the
delineation between the two is more nebulous than pedagogical stereotypes suggest.

3.3 Other Code-Based Music Composition Platforms

I am far from suggesting that TuneScope is the first platform to synthesize programming and music. Several
domain-specific and functional languages exist to facilitate music composition in unique ways. Of these, I will discuss
Sonic Pi and TunePad. Sonic Pi runs on the SuperCollider synthesis engine and is written in Ruby. TunePad is written
in Python and offers a more DAW-like user interface, in contrast to the IDE-driven development of Sonic Pi.

Previous efforts to integrate music into computer science education using these domain-specific languages have been
promising. Sonic Pi was specifically designed with pedagogy in mind, with researchers performing the first experiments
on 12-year-old children with little to no coding background. Their goal was to progress from “this is a computer” to the
successful completion of an operational program that generated a satisfying piece of music. The initial experiment had
children running the SuperCollider synthesis engine on a Raspberry Pi microcontroller, and students wrote their code
on a tailored and simplified IDE. The results of the pilot were incredibly promising; all students were successfully able
to write a fun “students were extremely enthusiastic about this first encounter with the world of programming”[1].

TunePad prioritizes familiarity for producers and musicians, offering them more freedom in a bottom-up development
environment. Users can code segments in Python and interact with the platform as a DAW, manipulating instruments,
effects, and sequencers [10].

While Sonic Pi and TunePad were designed with novices in mind, they still present some shortcomings. For one,
students need access to a Raspberry Pi and the SuperCollider engine to create music in Sonic Pi; this means making
music and writing code outside of a classroom is more challenging. In TunePad’s case, the authors state that a major
limitation of the platform is the focus on “advanced learners” rather than the middle schoolers using it as a part of
their summer enrichment curriculum [1, 15]. Second, there is significant room in both cases to make language syntax
more beginner-friendly. Current literature indicates that the rise of low-code and no-code development platforms makes

6

computer science more accessible, especially in educational fields. Lebens and Finnegan concluded that the use of a
low-code platform increased students’ comfort with the Agile methodology, compared to those who were required to
learn programming syntax in their course [11]. Naturally, I wondered how I could incorporate musical pedagogical
ideas into a low-code, block-based platform.

Dan Garcia, a professor at the University of California, Berkeley teaches an introductory course titled “The Beauty
and Joy Computing”. He begins instruction in Snap! and transitions to Python for the latter half of the course. His
course approaches computational thinking from a similarly project-oriented manner, even leveraging the native sound
functionalities. At the Make to Learn lab, we wanted to build on the successes at Berkeley while teaching computer
science with a more artistic focus.

The design of TuneScope and its accompanying curriculum synthesizes these above works to provide a more
streamlined, accessible, and equitable method of engaging novices in computational thinking.

4 Design and Iterations

4.1 Inherited Work

Before my introduction to the project in June 2021, the Make to Learn Lab had already finished and cemented the art
curriculum and its respective modules for class use. TuneScope at the time could play individual notes and perform
small-scale sound synthesis through code but lacked the functionality to compose music and integrate music with the
preceding art modules. The goal at the time was to enable students to write music entirely with TuneScope blocks.
Naturally, this raised several questions. How can we play several music tracks simultaneously and ensure they are
synchronized? How will students be introduced to melodies, chords, and rhythm? Will the module modules seamlessly
and effectively integrate with the art modules to enhance computational thinking education? How can we disseminate
this to a broader audience?

The following semester of the course offered TuneScope with the ability to create multiple tracks and play them
simultaneously. Students were able to select from a plethora of instruments and track types (melody lines and loops,
chord sequences and loops, and drum loops). However, the initial design was flawed and raised some confusion among
students. One of the primary teaching points of the melody modules is the introduction of nested lists. The initial Play
Tracks block accepted melodies with two separate lists: one for all the note values, and one for the note durations.
Class feedback indicated that this was not an intuitive way to look at music, though it was intuitive in the backend
code to design the musical structure in this manner. I later changed this to better resemble how written sheet music is
interpreted: note values and their respective durations paired together, sequentially ordered in a list 3. The students
were able to pick the format up within a few modules and create impressive music through TuneScope code. The
principles upon which TuneScope was designed mandated simplicity and ease, and this required us to consider a new
format for the next iteration of this curriculum.

From here, the team and I prepared TuneScope for integration as an official Snap! library. With feedback from the
developers, we changed the Play Tracks module to simplify the creation of chords and melodies and rewrote our custom
blocks to be more pedagogically concise. I also implemented MIDI controller capabilities–students were now able to
compose a song in TuneScope and play along with a MIDI keyboard in the same browser session. This design iteration
sparked several interesting demos, including one by Monty Williams from Virginia Commonwealth University. Monty,
an avid xylophonist, played along to a custom chord track with his electric MIDI xylophone to demo TuneScope’s
capabilities and use it as a tool to teach music and computer science. I was fortunate to present my work at the Thornton
Society Dinner in October of 2022, right after I had published TuneScope to the official Snap! library. As a way of

7

Figure 3: Example melody with the updated measure and section blocks.

showing faculty, donors, and alumni the caliber of the engineering department, my work was presented as part of
current undergraduate and graduate research in the department. Here I was able to test the efficacy of TuneScope’s
design principles by introducing my audience (many of whom lacked programming and music experience) to a simple
block-based song composition. The reception from these demos was largely positive, with several people commenting
on the ease with which one could develop music with the platform. To further minimize the gap between globally
available music and playable music on TuneScope, I expanded its MIDI capabilities to enable file upload and conversion.
Students can import MIDI files from their favorite songs, convert them to TuneScope format with one button click, and
begin modifying this composition with their ideas.

4.2 Assessing TuneScope’s Effectiveness as a Learning Tool

Throughout the course, students are exposed to structured instructor feedback on their code. I used these feedback
reports to examine student growth throughout eight modules from the Fall 2022 iteration of the course. Using sentiment
analysis via TextBlob, I computed the average sentiment score across all students per module, and subsequently tracked
the change over time. Feedback appeared as a combination of a rubric score, analysis of project design with respect
to art and music, analysis of code, and suggestions for code improvements. Focusing solely on strings regarding the
computer science fundamentals being assessed (abstraction, algorithms, data representation, and documentation), I
filtered the feedback for each module to create a corpus explicitly for code feedback. From here, I ran each corpus
through the TextBlob sentiment analysis model to determine whether feedback on student assignments and their grasp
of computer science concepts improved despite the introduction of challenging new topics like music. I also split the
overall feedback into sub-components to gather more CT-specific data.

5 Results

The results from this analysis 4 showed a positive increase in comprehension of computational thinking concepts after
the introduction of TuneScope music modules. However, the study lacked empirical data on student performance after
music modules were used in the curriculum. Furthermore, the study could not record how well the students retained
computational thinking concepts after the semester had concluded.

8

Figure 4: Polarity scores of feedback from the Fall 2022 semester, aggregated by module number. Polarities closer
to +1 indicate very positive sentiment in the feedback reports. Each module averages polarities from the following
subcategories: algorithms, abstraction, data representation, and abstraction.

We were able to gather subjective feedback from the students after the semester; the course received an average feedback
score of 4.8 out of 5.0, and many of the comments indicated that students thoroughly enjoyed the course. The following
are selected quotes that highlight TuneScope’s effectiveness in engaging students with computing via art and music:

“I had a great time in this course! The projects were a lot of fun and it was great to see some
creative uses for coding. Snap was easy to use and a good platform for teaching this class, that
way people with no coding experience could approach it comfortably. I feel like the techniques
that I learned will be applicable to how I write code in general.”
“I am [matriculated as] a CS minor and I thoroughly enjoyed this course. In my CS courses we
only learn the nitty gritty of coding, but in this class, I got to use that knowledge to make some
really cool projects. I loved the intersection of art and coding. This course piqued my interest in
the back–end of Snap and how it was coded.”
“I loved the mix of music, art, and programming that this course offered. I really enjoyed
working on every assignment and I would love to see this course be continued.”
“An amazing experience that allowed me to apply my computer science knowledge to new areas.
It assisted me in learning how to apply abstract concepts to art, animation, and music. I will use
this knowledge in the future for sure.”

Despite the course having a mix of novice programmers and older computer science majors, most students found the use
of art and music a refreshing and engaging method of teaching CS principles. Several students also expressed how this
course will positively influence their thinking in future computing courses. Notably in quote 3, the student verbalizes
how using the Snap! platform engaged their curiosity in software design and engineering projects. They contextualized

9

the art and music course in the broader scope of computing courses offered at UVA, noting how they learned both the
principles of computing and how to use these directly in hands-on creative projects. Quote 4 emphasizes the success of
synthesizing art, music, and computing, and suggests the course has the potential for repeated instruction and support
from the student body.

While we were able to garner some empirical and anecdotal data showing positive engagement from students, we also
needed to tackle the issue of spreading TuneScope instruction to a wider audience, namely the users of Snap! and other
introductory computer science instructors. In January 2023, I submitted a short paper detailing some of the results
above to the Special Interest Group on Computer Science Education (SIGCSE), a subdivision of the Association for
Computing Machinery (ACM) which allows educators to discuss the “development, implementation, and/or evaluation
of computing programs [and] curricula” [13]. I was accepted as a contestant in the Student Research Competition
(SRC) at SIGCSE 2023. I attended the conference in May 2023 and had the privilege of presenting my work to
computer science instructors, pedagogy-focused corporations, and other research-oriented students from across the
globe. Feedback from instructors on our course design and implementation was equally insightful. Many attendees
commented on the novelty of teaching introductory computer science using music and were thoroughly interested in
how students were taught music theory in tandem with programming. Of these, a few instructors had mentioned their
unsuccessful attempts at integrating existing music-as-code tools such as SonicPi and TunePad, and appreciated the
simplicity of block-based programming in this endeavor. I discussed with one professor how TuneScope’s user interface
implies a visual similarity to musical staves and notation, while still adhering to basic data structures such as nested
lists to store notes and melodies. He found it particularly interesting, from an avid musician and computer science
instructor’s perspective, how TuneScope represented musical data and presented it to the user in a programming-focused
manner. I also had the privilege of meeting with some of the lead developers of Snap!, namely Dan Garcia and Michael
Ball, who expressed their enthusiasm for having the TuneScope music library officially integrated into Snap! With
version 8.0.

6 Future Work and Reflections

6.1 Expanding Upon TuneScope

One of the current goals of the Make to Learn lab is to reach a wider audience with TuneScope. A major leap in
this mission was the inclusion of TuneScope as an official library in Snap! 8.0. I believe there are two obvious and
actionable paths to pursue from here.

For one, we can look at Dan Garcia’s course The Beauty and Joy of Computing, which is offered as a self-guided online
course. Since TuneScope is already segmented into distinct modules and is accompanied by a comprehensive reference
manual, it makes logical sense to publish our work at the University of Virginia to an online education platform. A few
problems arise with this, namely the need for automated feedback and grading of TuneScope projects (both of which
are in development at the Make to Learn lab). However, this will allow us to reach an enormous audience due to its
asynchronicity, and could encourage teachers in underprivileged and underfunded school districts to employ the course
in their curricula.

Second, we can look to local Charlottesville school districts as primary outreach targets. Building on Gleasman et
al.[8], we can introduce children to block based programming as early as middle school. By then, they will have already
had some exposure to music education which could incentivize young students to experiment with TuneScope and
computational thinking in their own time.

6.2 Future Studies on the Effectiveness of TuneScope

With the recent publication of our specialized textbook for the course [4], we have reached a point where we can truly
begin iterating a standardized version of the course. As prior editions of the course lacked certain key features which

10

were implemented over my time as lead developer (synchronized multi-tracking, MIDI functionality, integration as an
official Snap! library), we could not conduct a longitudinal appraisal of the music modules. Doing such a study would
also enable us to observe whether our course is attracting more underrepresented groups to computer science. One of
the key criticisms I received at the SIGCSE conference was that the paper didn’t have data from multiple semesters of
instruction. While this certainly was a shortcoming, I believe we can gather sufficient data by the conclusion of the Fall
2023 semester, especially if we implement a comprehensive numerical rubric for each assignment. Several instructors
had suggested this for future semesters, but introducing a numerical grading system brings its own challenges. For one,
it is difficult to judge something as abstract and creative as music with an objective, numerical score. This is one of
the many ways in which computer science and music differ. While different programmers/musicians will approach
their desired end product in unique ways, one can theoretically assign “correct” and “incorrect” to a programming
assignment while the standards for doing so for a music composition are less defined. Professors can write test cases
and demand certain product specifications for software, but who can objectively assess the merit of two different music
pieces? I believe this is part of what makes TuneScope a powerful learning tool in the first place. Students are not
unilaterally focused on delivering a “correct” end product and instead are encouraged to take creative liberties within
project guidelines. A study by Jennifer Crocker at the University of Michigan showed that more than 80% of students
based self worth on academic competence, with 66% basing self worth on “doing better than others” [5]. Students
have been found to take on greater academic risks and “seek out more challenging problems”[6] when grades are not
involved, compared to when they are graded on the work they produce. Can we at the Make to Learn lab separate artistic
expression from computational competency, and assess the latter while encouraging students to take on academic and
creative challenges [3]?

Part of what has made the objective assessment of students’ computational thinking comprehension difficult is the notion
of “equitable grading practices”. In a panel regarding this topic at SIGCSE 2023, several practices and their efficacies
were discussed which could help Make to Learn analyze the course’s success over time. One professor explained her
method of grading students on an integer scale from 1 to 4, where 4 denotes mastery in a topic or concept. The key
facet to this was the ability for students to receive feedback on their assignments, make changes to their submissions,
and submit it after the due date to bump up their grade. Another professor (namely Dan Garcia, key member of the
Snap! team) also implemented this “infinite deadline” concept to great success [7]. Perhaps future iterations of our
course can implement an empirical rubric and allow students to adjust their grade using the feedback from instructors
(the same kind of feedback used in our sentiment analysis).

TuneScope students over the last few semesters have developed immensely creative projects that test the boundaries
of the course and beget the development of new features on our end. We want to continue empowering students to
self-regulate their learning and explore computational thinking on their own volition.

6.3 TuneScope and Diversity in Computing

The overarching goal of the TuneScope project is to promote diversity in computer science. While we may not have
enough longitudinal evidence to track enrollment and retention of underrepresented groups, prior studies underlining
the importance of “identity” in computing and current feedback from many of our students (half of whom come from
underrepresented groups in computing) suggest we are on the right track. Our students have demonstrated pride and
ambition in their work, and have explicitly stated that they will continue to take computer science courses and employ
the skills they learned via TuneScope.

As I reflect on my own identity as a computer scientist and musician, I realize how much my career has been influenced
by the support and encouragement I received as a novice. My early computer science courses and activities (read:
robotics) were given to me as sandbox environments. I was encouraged to explore, take risks, make mistakes, and learn
with nuance. Moreover, the projects I developed were uniquely mine, and this motivated me to pursue the field at the

11

collegiate level. In tandem, music has always been a hobby to me; with no pressure to perform or be judged on my
performance, I was again given autonomy to explore my own interests and passions.

I think about how many students are not afforded the same liberties and privileges I was afforded. I was lucky to take
a computer science course in high school; some districts don’t even have the funds to buy spare computers for their
students, let alone hire or train new computer science teachers. There are hundreds upon thousands of kids who could
have been inspired to pursue computing, but never had the opportunity to even begin. Working with TuneScope has
made me more cognizant of my role in reducing this disparity, and I will carry this understanding throughout my career
as a software engineer and computer scientist.

7 Conclusion

TuneScope has shown great promise in engaging novice computer science students with fundamental computational
thinking skills. Music has proven to be an effective medium to inspire students to take creative risks and explore
these skills through a low cost, low code platform. While the long term effects on computer science retention and
diversification of TuneScope at the University of Virginia and beyond are yet to be realized, our initial work at the
Make to Learn lab has shown favorable progress toward these goals. Focusing efforts to provide a low-overhead,
music-based computing curriculum to underfunded and underrepresented schools will be the next step in democratizing
computational thinking.

8 Acknowledgements

I would like to recognize my research advisor N. Rich Nguyen and the rest of the Make to Learn team: Glen Bull, Jo
Watts, Rachel Gibson, and Eric Stein. Without them I would not have had the opportunity to work on such a meaningful
project, attend incredible conferences, and most importantly realize my desire to combine music and computer science.
I would also like to thank my parents, Sapna and Vikrant Padhye, for encouraging me to pursue my passions and
supporting my decisions every step of the way. Finally my friends, to whom I owe the utmost gratitude for showing
how much of a joy it has been to live and study at the University of Virginia.

12

References

[1] AARON, S., AND BLACKWELL, A. F. From Sonic Pi to Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages. In Proceedings of the First ACM SIGPLAN Workshop on Functional Art,
Music, Modeling & Design (New York, NY, USA, 2013), FARM ’13, Association for Computing Machinery,
pp. 35–46. event-place: Boston, Massachusetts, USA.

[2] BARR, V., AND STEPHENSON, C. Bringing Computational Thinking to K-12: What is Involved and What is the
Role of the Computer Science Education Community? ACM Inroads 2, 1 (Feb. 2011), 48–54.

[3] BASHIR, M. M. The Value and Effectiveness of Feedback in Improving Students’ Learning and Professionalizing
Teaching in Higher Education. Journal of Education and Practice (Jan. 2016).

[4] BULL, G., GIBSON, R., WATTS, J., NGUYEN, N. R., AND DAHL, L. TUNESCOPE Creating Digital Music in
Snap! Association for the Advancement of Computing in Education, University of Virginia, Charlottesville, VA,
2023.

[5] CROCKER, J., AND KNIGHT, K. M. Contingencies of Self-Worth. Current Directions in Psychological Science
14, 4 (2005), 200–203.

[6] DECI, E. L., RYAN, R. M., AND WILLIAMS, G. C. Need satisfaction and the self-regulation of learning.
Learning and Individual Differences 8, 3 (1996), 165–183.

[7] GARCIA, D., CAMARENA, M., LIN, K., AND WESTERLAND, J. Equitable Grading Best Practices. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 2 (New York, NY, USA,
2023), SIGCSE 2023, Association for Computing Machinery, pp. 1200–1201. event-place: Toronto ON, Canada.

[8] GLEASMAN, C., FEGELY, A., AND KOESTER, C. Making Computer Science Education Accessible to Rural
Middle School Female Students: A Conceptual Framework. In Proceedings of Society for Information Technology
& Teacher Education International Conference 2020 (Online, Apr. 2020), D. Schmidt-Crawford, Ed., Association
for the Advancement of Computing in Education (AACE), pp. 24–28.

[9] GOODE, J., SKORODINSKY, M., HUBBARD, J., AND HOOK, J. Computer Science for Equity: Teacher Education,
Agency, and Statewide Reform. Frontiers in Education 4 (2020).

[10] HORN, M., BANERJEE, A., AND BRUCKER, M. TunePad Playbooks: Designing Computational Notebooks for
Creative Music Coding. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2022), CHI ’22, Association for Computing Machinery. event-place: New Orleans, LA,
USA.

[11] LEBENS, M., AND FINNEGAN, R. Using a Low Code Development Environment to Teach the Agile Methodology.
In Agile Processes in Software Engineering and Extreme Programming (Cham, 2021), P. Gregory, C. Lassenius,
X. Wang, and P. Kruchten, Eds., Springer International Publishing, pp. 191–199.

[12] MICKELSON, R. A., MIKKELSEN, I., DORODCHI, M., CUKIC, B., AND HORN, T. Fostering Greater Persistence
Among Underserved Computer Science Undergraduates: A Descriptive Study of the I-PASS Project. Journal of
College Student Retention: Research, Theory & Practice 0, 0, 15210251221086928.

[13] PADHYE, H., GIBSON, R., BULL, G., AND NGUYEN, N. R. Does musical context improve computational
thinking skills? In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 2 (New
York, NY, USA, 2023), SIGCSE 2023, Association for Computing Machinery, p. 1231.

[14] PARKER, M. C. Barriers and supports to offering computer science in high schools: A case study of structures
and agents. ACM Trans. Comput. Educ. 23, 2 (mar 2023).

[15] PETRIE, C. Programming music with Sonic Pi promotes positive attitudes for beginners. Computers & Education
179 (2022), 104409.

13

[16] SYLWIA HOLMES, S. H. The impact of participation in music on learning mathematics. London Review of
Education 15, 3 (2017), 425–438.

[17] WANG, J., HONG, H., RAVITZ, J., AND HEJAZI MOGHADAM, S. Landscape of K-12 Computer Science
Education in the U.S.: Perceptions, Access, and Barriers. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (New York, NY, USA, 2016), SIGCSE ’16, Association for Computing
Machinery, pp. 645–650. event-place: Memphis, Tennessee, USA.

[18] YADAV, A., HONG, H., AND STEPHENSON, C. Computational Thinking for All: Pedagogical Approaches to
Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends 60, 6 (Nov. 2016), 565–568.

14

	Abstract
	Background
	Related Work
	Music as an Educational Tool
	Inequities in Computer Science Education
	Other Code-Based Music Composition Platforms

	Design and Iterations
	Inherited Work
	Assessing TuneScope’s Effectiveness as a Learning Tool

	Results
	Future Work and Reflections
	Expanding Upon TuneScope
	Future Studies on the Effectiveness of TuneScope
	TuneScope and Diversity in Computing

	Conclusion
	Acknowledgements

